Lecture 11 – Probability

DSC 10, Spring 2024

Announcements

- Discussion is this afternoon. Problems are here.
- Lab 3 is due tomorrow at 11:59PM.
- Quiz 2 is on **Friday** in your assigned quiz session.
 - You should get an email tomorrow with your seating assignment.
 - Bring your ID and a pencil.
 - This is a 20 minute paper-based quiz with no aids allowed.
 - The quiz covers Lecture 5 through 9 and related labs and homeworks.
 - Quiz 2 is more challenging than Quiz 1, and next week's Midterm Exam will be more challenging than Quiz 2.
- Homework 3 is due on Tuesday.
 - Problems 1 and 2 only are relevant to Quiz 2.

Agenda

We'll cover the basics of probability theory. This is a math lesson; take written notes 📤.

Probability resources

Probability is a tricky subject. If it doesn't click during lecture or on the assignments, take a look at the following resources:

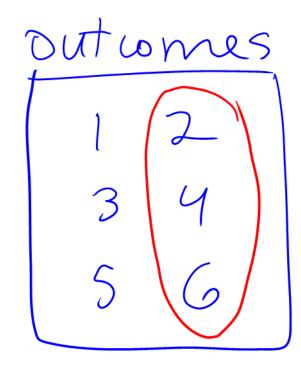
- Computational and Inferential Thinking, Chapter 9.5.
- Theory Meets Data, Chapters 1 and 2.
- Khan Academy's unit on Probability.

Probability theory

- Some things in life seem random.
 - e.g., flipping a coin or rolling a die .
- The **probability** of seeing "heads" when flipping a fair coin is $\frac{1}{2}$.
- One interpretation of probability says that if we flipped a coin infinitely many times, then $\frac{1}{2}$ of the outcomes would be heads.

Terminology

- **Experiment**: A process or action whose result is random.
 - e.g., rolling a die.
 - e.g., flipping a coin twice.
- Outcome: The result of an experiment.
 - e.g., the possible outcomes of rolling a six-sided die are 1, 2, 3, 4, 5, and 6.
 - e.g., the possible outcomes of flipping a coin twice are HH, HT, TH, and TT.
- Event: A set of outcomes.
 - e.g., the event that the die lands on a even number is the set of outcomes {2, 4, 6}.
 - e.g., the event that the die lands on a 5 is the set of outcomes {5}.
 - e.g., the event that there is at least 1 head in 2 flips is the set of outcomes {HH,
 HT, TH}.



Terminology

- **Probability**: A number between 0 and 1 (equivalently, between 0% and 100%) that describes the likelihood of an event.
 - 0: The event never happens.
 - 1: The event always happens.
- Notation: If A is an event, P(A) is the probability of that event.

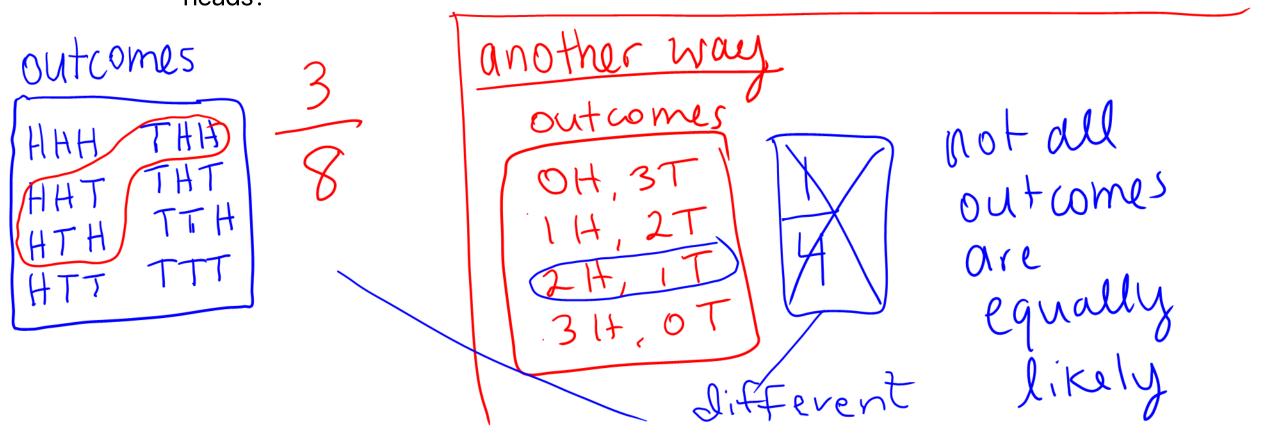
p(volling even) = 3/3

Equally-likely outcomes

• If all of the possible outcomes are equally likely, then the probability of A is

$$P(A) = \frac{\text{\# of outcomes satisfying } A}{\text{total \# of outcomes}} \qquad \frac{\text{\# good}}{\text{\# outcomes}}$$

• **Example 1**: Suppose we flip a fair coin 3 times. What is the probability we see exactly 2 heads?

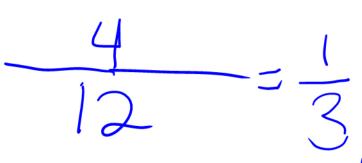


I have three cards: red, blue, and green. What is the chance that I choose a card at random and it is green, then - without putting it back - I choose another card at random and it is red? without replacement

- A) $\frac{1}{9}$
- B) $\frac{1}{6}$
- C) $\frac{1}{3}$

another way. (multiplication) $P(green on 1s+ card) = \frac{1}{3}$ • D) $\frac{2}{3}$ • E) None of the above. P(hed on 2nd card if got green on 1sr card) = 1 outcomes

 $P(B) = \frac{10}{21}$



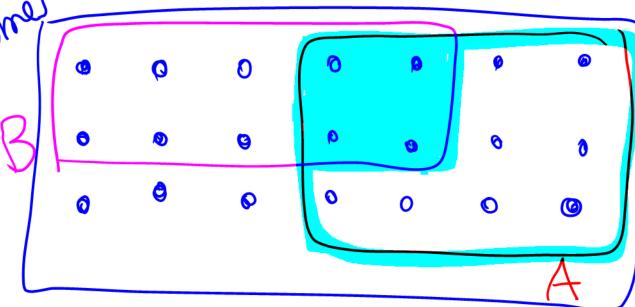
Conditional probabilities

- Two events A and B can both happen. Suppose that we know A has happened, but we don't know if B has.
- If all outcomes are equally likely, then the conditional probability of B given A is:

$$P(B \text{ given } A) = \frac{\# \text{ of outcomes satisfying both } A \text{ and } B}{\# \text{ of outcomes satisfying } A}$$

• Intuitively, this is similar to the definition of the regular probability of B, $P(B) = \frac{\# \text{ of outcomes satisfying } B}{\text{total } \# \text{ of outcomes}}$, if you restrict the set of possible outcomes to be just those in event A.

knowledge that A happened means Set of possible sutcomes is just A



5 YOUKIN

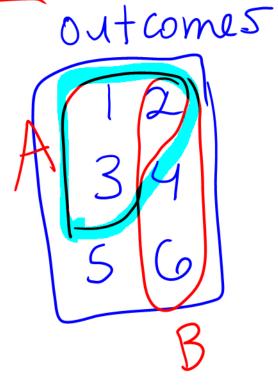
B

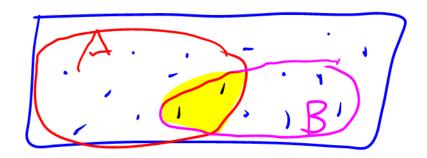
Concept Check ✓ – Answer at <u>cc.dsc10.com</u>

$$P(B \text{ given } A) = \frac{\# \text{ of outcomes satisfying both } A \text{ and } B}{\# \text{ of outcomes satisfying } A}$$

I roll a six-sided die and don't tell you what the result is, but I tell you that it is 3 or less. What is the probability that the result is even?

- A) $\frac{1}{2}$
- (B) $\frac{1}{3}$
- C) $\frac{1}{4}$
- D) None of the above.



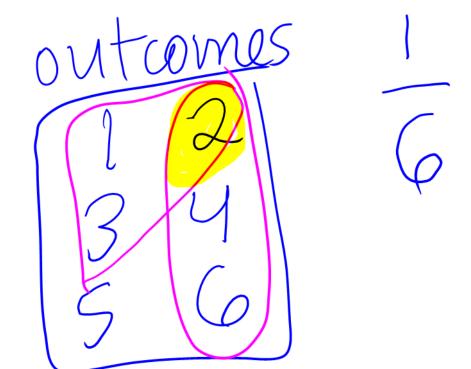


Probability that two events both happen

• Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that both A and B occur is

$$P(A \text{ and } B) = \frac{\# \text{ of outcomes satisfying both } A \text{ and } B}{\text{total } \# \text{ of outcomes}}$$

• **Example 2**: I roll a fair six-sided die. What is the probability that the roll is 3 or less **and** even?



The multiplication rule

• The multiplication rule specifies how to compute the probability of both A and B happening, even if all outcomes are not equally likely.

 $P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$

• Example 2, again: I roll a fair six-sided die. What is the probability that the roll is 3 or less and even?

 $P(\le 3 \text{ and even}) =$ $P(\le 3) * P(\text{even given } \le 3)$ $\frac{3}{3} \cdot 1$

Cards
$$P(G \mid S^{t} \text{ and } R \mid 2^{nd}) \text{ harpun}$$

$$= P(G \mid S^{t}) * P(R \mid 2^{nd} \mid given)$$

$$= \frac{1}{2} * \frac{1}{2}$$

for A ond happens, have A

What if A isn't affected by B?

• The multiplication rule states that, for any two events A and B,

$$P(A \text{ and } B) = P(A) \cdot P(B \text{ given } A)$$

- What if knowing that A happens doesn't tell you anything about the likelihood of B happening?
 - Suppose we flip a fair coin three times.
 - The probability that the second flip is heads doesn't depend on the result of the first flip.
- Then, what is P(A and B)?

Independent events

ndependent events

• Two events
$$A$$
 and B are independent if $P(B \text{ given } A) = P(B)$, or equivalently if
$$P(A \text{ and } B) = P(A) \cdot P(B)$$

• **Example 3**: Suppose we have a coin that is **biased**, and flips heads with probability 0.7. Each flip is independent of all other flips. We flip it 5 times. What's the probability we see

Each flip is independent of all other flips. We flip it 5 times. What's the probability we see

$$P(H \text{ on } | \text{St flip AND}) + \text{ on } 2^{n} \text{ flip} | \text{ ex. } \text{ roll die }, \text{ events } \leq 2 \text{ even}$$

$$= P(H \text{ on } | \text{St flip}) + P(H \text{ on } 2^{n} \text{ flip})$$

$$= P(H \text{ on } | \text{St flip}) + P(H \text{ on } 2^{n} \text{ flip})$$

$$= P(H \text{ on } | \text{St flip}) + P(H \text{ on } 2^{n} \text{ flip})$$

$$= P(\text{even } | \text{ even } | \text$$

Probability that an event *doesn't* happen

Complement rule

- The probability that A doesn't happen is 1 P(A).
- For example, if the probability it is sunny tomorrow is 0.85, then the probability it is not sunny tomorrow is 0.15.

Concept Check ✓ – Answer at <u>cc.dsc10.com</u>

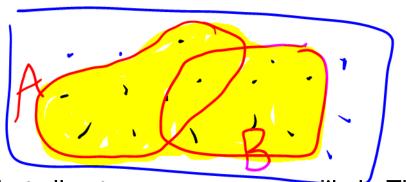
Every time I call my grandma \odot , the probability that she answers her phone is $\frac{1}{3}$, independently for each call. If I call my grandma three times today, what is the chance that I will talk to her at least once?

- ·A) must be > 1/3 with multiple attempts
- B) $\frac{2}{3}$
- because not guaranteed
- E) None of the above.

$$P(\text{no answe}) = \frac{2}{3}$$

P(No answer AND no answer AND ho answer) = $\left(\frac{2}{3}\right)^3 = \frac{8}{27}$

 $P(answer at least once) = 1 - P(never answers) = 1 - \frac{8}{27} =$



Probability of either of two events happening

Suppose again that A and B are two events, and that all outcomes are equally likely. Then,
 the probability that either A or B occur is

$$P(A \text{ or } B) = \frac{\# \text{ of outcomes satisfying either } A \text{ or } B}{\text{total } \# \text{ of outcomes}}$$

• **Example 4**: I roll a fair six-sided die. What is the probability that the roll is even or at least

outcomes $\frac{4}{6} = \frac{2}{3}$ Wrong. $\frac{3}{6} + \frac{2}{6} = \frac{5}{6}$

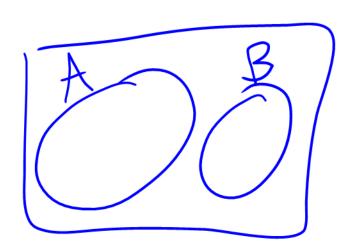
The addition rule

- Suppose that if A happens, then B doesn't, and if B happens, then A doesn't.
 - Such events are called mutually exclusive they have no overlap.
- If A and B are any two mutually exclusive events, then

$$P(A \text{ or } B) = P(A) + P(B)$$

• **Example 5**: Suppose I have two biased coins, coin *A* and coin *B*. Coin *A* flips heads with probability 0.6, and coin *B* flips heads with probability 0.3. I flip both coins once. What's

the probability I see two different faces?



O.6 * 0.7 + 0.4 * 0.3

Aside: Proof of the addition rule for equally-likely events

You are not required to know how to "prove" anything in this course; you may just find this interesting.

If A and B are events consisting of equally likely outcomes, and furthermore A and B are mutually exclusive (meaning they have no overlap), then

$$P(A \text{ or } B) = \frac{\# \text{ of outcomes satisfying either } A \text{ or } B}{\text{total } \# \text{ of outcomes}}$$

$$= \frac{(\# \text{ of outcomes satisfying } A) + (\# \text{ of outcomes satisfying } B)}{\text{total } \# \text{ of outcomes}}$$

$$= \frac{(\# \text{ of outcomes satisfying } A)}{\text{total } \# \text{ of outcomes}} + \frac{(\# \text{ of outcomes satisfying } B)}{\text{total } \# \text{ of outcomes}}$$

$$= P(A) + P(B)$$

Summary, next time

- Probability describes the likelihood of an event occurring.
- There are several rules for computing probabilities. We looked at many special cases that involved equally-likely events.
- There are two general rules to be aware of:
 - The **multiplication rule**, which states that for any two events, $P(A \text{ and } B) = P(B \text{ given } A) \cdot P(A)$.
 - The **addition rule**, which states that for any two **mutually exclusive** events, P(A or B) = P(A) + P(B).
- Next time: Simulations.