Lecture 11 - Probability
DSC 10, Summer 2024

Announcements

- We have a very busy week! Lots of resources: Ed, office hours, discussion, midterm review.
- Lab 3 is due tonight.
- Midterm Exam is Thursday 11AM in this room. Review in discussion today and tomorrow in lab session.
- Homework 3 due Friday.
- Midterm project due Monday.

Agenda

We'll cover the basics of probability theory. This is a math lesson; take written notes 希.

Probability resources

Probability is a tricky subject. If it doesn't click during lecture or on the assignments, take a look at the following resources:

- Computational and Inferential Thinking, Chapter 9.5.
- Theory Meets Data, Chapters 1 and 2.
- Khan Academy's unit on Probability.

Probability theory

- Some things in life seem random.
- e.g., flipping a coin or rolling a die
- The probability of seeing "heads" when flipping a fair coin is $\frac{1}{2}$.
- One interpretation of probability says that if we flipped a coin infinitely many times, then $\frac{1}{2}$ of the outcomes would be heads.

Terminology

- Experiment: A process or action whose result is random.
- e.g., rolling a die.
- e.g., flipping a coin twice.
- Outcome: The result of an experiment.

- e.g., the possible outcomes of rolling a six-sided die are $1,2,3,4,5$, and 6.
- e.g., the possible outcomes of flipping a coin twice are $\mathrm{HH}, \mathrm{HT}, \mathrm{TH}$, and TT.
- Event: A set of outcomes.
- e.g., the event that the die lands on a even number is the set of outcomes $\{2,4,6\}$.
- e.g., the event that the die lands on a 5 is the set of outcomes $\{5\}$.
- e.g., the event that there is at least 1 head in 2 flips is the set of outcomes $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$.

Terminology

- Probability: A number between 0 and 1 (equivalently, between 0\% and 100\%) that describes the likelihood of an event.
- 0 : The event never happens.
- 1: The event always happens.
- Notation: If A is an event, $P(A)$ is the probability of that event.

$$
\text { fair coin: } \quad P(\text { Heads })=1 / 2
$$

Equally-likely outcomes

- If all of the possible outcomes are equally likely, then the probability of A is

$$
P(A)=\frac{\# \text { of outcomes satisfying } A}{\text { total \# of outcomes }}
$$

- Example 1: Suppose we flip a fair coin 3 times. What is the probability we see exactly 2 heads?

Concept Check ∇ - Answer at cc.dsc10.com
I have three cards: red, blue, and green. What is the chance that I choose a card at random and it is green, then - without putting it back - I choose another card at random and it is red?
-A) $\frac{1}{9}$
-B) $\frac{1}{6} ?$ majority
-C) $\frac{1}{3}$

- D) $\frac{2}{3}$
- E) None of the above.

3 cards, 1/3 of green

$$
P(G R)=\frac{1}{3} \times \frac{1}{2}
$$

then 2 cards, its red
outcomes

$$
\begin{array}{llll}
R B & B G & G & \frac{1}{6} \\
R G & B R & G R &
\end{array}
$$

Conditional probabilities

- Two events A and B can both happen. Suppose that we know A has happened, but we don't know if B has.
- If all outcomes are equally likely, then the conditional probability of B given A is:

$$
\begin{aligned}
& P(B \mid A) \\
& P(B \text { given } A)=\frac{\text { \# of outcomes satisfying both } A \text { and } B}{\# \text { of outcomes satisfying } A}
\end{aligned}
$$

- Intuitively, this is similar to the definition of the regular probability of B, $P(B)=\frac{\# \text { of outcomes satisfying } B}{\text { total } \# \text { of outcomes }}$, if you restrict the set of possible outcomes to be just those in event A.

$$
P(B \text { given } A)=\frac{3}{9}=\frac{1}{3}
$$

Concept Check ∇ - Answer at cc.dsc10.com

$$
P(B \text { given } A)=\frac{\# \text { of outcomes satisfying both } A \text { and } B}{\# \text { of outcomes satisfying } A}
$$

I roll a six-sided die and don't tell you what the result is, but I tell you that it is 3 or less. What is the probability that the result is even?

- A) $\frac{1}{2}$
B) $\frac{1}{3}$
C) $\frac{1}{4}$
- D) None of the above.
given $A \rightarrow$ bes than or equal to 3

$$
\left[\frac{1}{3}\right]_{3 \text { rest }}^{2(\text { ever }}
$$

Probability that two events both happen

- Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that both A and B occur is

$$
P(A \text { and } B)=\frac{\# \text { of outcomes satisfying both } A \text { and } B}{\text { total } \# \text { of outcomes no conditions or proa }} \text { Knowledge }
$$

- Example 2: I roll a fair six-sided die. What is the probability that the roll is 3 or less and even?

$$
P(\text { 3orless AnN even })=\frac{1}{6}
$$

The multiplication rule

- The multiplication rule specifies how to compute the probability of both A and B happening, even if all outcomes are not equally likely.

$$
P(A \text { and } B)=P(A) \cdot P(B \text { given } A)
$$

- Example 2, again: I roll a fair six-sided die. What is the probability that the roll is 3 or less and even?

$$
\begin{aligned}
& P(\leqslant 3 \text { and even })=P(\leq 3) \cdot P(\text { even given } \leq 3) \\
&=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6} \\
&=P(\text { ever }) \cdot P(\leq 3 \text { given ever }) \\
& \frac{12}{4}=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6} \\
& 56
\end{aligned}
$$

What if A isn't affected by B ?

- The multiplication rule states that, for any two events A and B,

$$
\begin{array}{ll}
P(A \text { and } B)=P(A) \cdot \overparen{P(B \text { given } A)} P(B) \text { if } A \& B \text { are } \\
\text { inde pendent }
\end{array}
$$

- What if knowing that A happens doesn't tell you anything about the likelihood of B happening?
- Suppose we flip a fair coin three times.
- The probability that the second flip is heads doesn't depend on the result of the first flip.
- Then, what is $P(A$ and $B)$?
$P(A$ giver $B)=P(A)$ if independent independent: roll ≤ 2 roll even

Independent events

- Two events A and B are independent if $P(B$ given $A)=P(B)$, qr equivalently if

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

- Example 3: Suppose we have a coin that is biased, and flips heads with probability 0.7. Each flip is independent of all other flips. We flip it 5 times. What's the probability we see 5 heads in a row?

$$
\begin{aligned}
P(H H H H H) & =P\left(H 1^{\text {st }} \text { and } H 2^{\text {nd }}\right. \text { and...) } \\
& =P\left(H 1^{\text {st }}\right) \cdot P\left(H^{\text {nd }}\right) \cdot \ldots \cdot P\left(H 5^{\text {th }}\right) \\
& =(0.7)(0.7)(0.7)(0.7)(0.7) \\
& =(0.7)^{5} \text { Not }(0.7) .5 \rightarrow 3.5
\end{aligned}
$$

Probability that an event doesn't happen

- The probability that A doesn't happen is $1-P(A)$.
- For example, if the probability it is sunny tomorrow is 0.85 , then the probability it is not sunny tomorrow is 0.15 .

Concept Check ∇ - Answer at cc.dsc10.com
Every time I call my grandma , the probability that she answers her phone is $\frac{1}{3}$, independently for each call. If I call my grandma three times today, what is the chance that I will talk to her at least once?

- A) $\frac{1}{3}$

Outcomes

$$
\begin{aligned}
& P(N N N)=\left(\frac{2}{3}\right)^{3} \\
& P(Y Y Y)=\left(\frac{1}{3}\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
P(\text { at least 7 })= & 1-P(\text { no calls picked up }) \\
& 1-\left(\frac{2}{3}\right)^{3} \\
= & 1-\frac{8}{27}=\frac{19}{27}
\end{aligned}
$$

Probability of either of two events happening

- Suppose again that A and B are two events, and that all outcomes are equally likely. Then, the probability that either A or B occur is

$$
P(A \text { or } B)=\frac{\# \text { of outcomes satisfying either } A \text { or } B}{\text { total } \# \text { of outcomes }}
$$

- Example 4: I roll a fair six-sided die. What is the probability that the roll is even or at least 5?

$$
\begin{aligned}
& \frac{4}{6}=\frac{\frac{2}{3}}{\text { wrong } P(A, 4,5,6\}} \\
&=\underbrace{\text { Not } B(A)+P(B)}_{\text {Nor generally the }} \\
&=P(\text { even })+P(25) \\
&=\frac{3}{6}+\frac{2}{6}=5 / 6 \times \text { wrong }
\end{aligned}
$$

The addition rule

- Suppose that if A happens, then B doesn't, and if B happens, then A doesn't.
- Such events are called mutually exclusive - they have no overlap.
- If A and B are any two mutually exclusive events, then

$$
P(A \text { or } B)=P(A)+P(B)
$$

- Example 5: Suppose I have two biased coins, coin A and coin B. Coin A flips heads with probability 0.6 , and coin B flips heads with probability 0.3 . I flip both coins once. What's the probability I see two different faces?
outcomes

$$
P(\text { two diff faces })=
$$

$P(A H$ and $B T)$ of $P\left(A^{T}\right.$ and $\left.B H\right)$

$$
=(0.6)(0.7)+(0.4)(0.3)
$$

Aside: Proof of the addition rule for equally-likely events
You are not required to know how to "prove" anything in this course; you may just find this interesting.
If A and B are events consisting of equally likely outcomes, and furthermore A and B are mutually exclusive (meaning they have no overlap), then

$$
\begin{aligned}
P(A \text { or } B) & =\frac{\# \text { of outcomes satisfying either } A \text { or } B}{\text { total \# of outcomes }} \\
& =\frac{(\# \text { of outcomes satisfying } A)+(\# \text { of outcomes satisfying } B)}{\text { total } \# \text { of outcomes }} \\
& =\frac{(\# \text { of outcomes satisfying } A)}{\text { total } \# \text { of outcomes }}+\frac{(\# \text { of outcomes satisfying } B)}{\text { total \# of outcomes }} \\
& =P(A)+P(B)
\end{aligned}
$$

Summary, next time

- Probability describes the likelihood of an event occurring.
- There are several rules for computing probabilities. We looked at many special cases that involved equally-likely events.
- There are two general rules to be aware of:
- The multiplication rule, which states that for any two events, $P(A$ and $B)=P(B$ given $A) \cdot P(A)$.
- The addition rule, which states that for any two mutually exclusive events, $P(A$ or $B)=P(A)+P(B)$.
- Next time: Simulations.

