
Midterm Exam - DSC 10, Summer Session I 2025

Full Name: Solutions

PID: A12345678

Instructions:

• This exam consists of 6 questions, worth a total of 49 points. You will have 80 minutes
to complete this exam.

• Write your answers on a separate piece of a paper and draw a square around your final
answer. Make sure your answers are legible. If we are unable to read your answer, we
will not grade your answer.

• As this exam is conducted remotely, we expect you to have your camera on throughout
the exam. We expect your hands to be visible during the exam. You are prohibited
from using online resources or calculators during this exam. In particular, if we see
evidence of generative AI usage, we will automatically give you a zero. A reference
sheet for babypandas and other miscellaneous python functions/methods is included
in this exam.

• After you finish your exam, you are expected to either take clear pictures of your
exam responses or scan the responses to pdf and then upload them to Gradescope.
You will have up to 15 minutes after the end of the exam to upload your
exams. Exams submitted after the 15 minute deadline will not be graded.

• Before beginning your exam: Write the phrase ”I agree to behave honestly and
fairly during and after this exam” once at the top of your exam response paper and
sign your name next to it. Exams without this pledge will not be graded.



Reference Sheet/Documentation

DataFrame Methods

• df.groupby(col) – group dataframe by column; followed by common aggregation
methods: mean, median, count, sum, min, max.

• df.plot(kind = ...) – quick plots (scatter, line, hist, etc.).

• df.get(col) – single column col as a Series.

• df.index[i] – row label at position i.

• df.take([i 1,...,i k]) – select rows by integer position.

• df[<condition>] – query to keep only the rows in df that satisfy the condition(s).

• df.assign(new col = values) – add or replace a column.

• df.drop(columns = [...]) – drop one or more columns.

• df.set index(col) – move a column to the index.

• df.reset index() – move the index back to a column.

• df.sort values(by = col, ascending = ...) – sort rows by a column.

• df.get(col).apply(func) - apply the function func to all values in the column col.

• left.merge(right, left on = ..., right on = ...) – merges the DataFrames
left and right by the specified columns.

Miscellaneous Python Methods

• s.upper() – all uppercase.

• s.lower() – all lowercase.

• s.split(<separator>) – splits string into a list based on the separator.

• arr[index] - the element at position index in array arr. The first element is at
position 0.

• np.array(<lst>) - casts list to arrays.

• np.arange(<start>, <stop>, <step>) - creates an array starting from <start>,
ending at <stop>, with step size <step>.

2



PID:

Course Grades

The DataFrame grades contains the following information about assignment and exam
scores for students in a previous offering of DSC 10:

• "pid" (str): The PID of the student.

• "assignment" (str): The name of the assignment ("hw1", "lab1", "midterm", etc.).
There are 6 homeworks, 7 labs, 1 midterm, and 1 final.

• "category": The category of the assignment (either "homework", "lab", or "exam").

• "raw score" (float): The student’s raw score on the assignment, as a percentage
from 0 to 100.

• "due date" (str): The due date of the assignment, formatted as "YYYY-MM-DD".

• "turn in date" (str): The date the student turned in the assignment, formatted as
"YYYY-MM-DD".

The first few rows of grades are shown below, though grades has many more rows than
pictured. Note that the rows of grades are not sorted in any particular order.

Notes:

• Throughout this exam, assume we have already run import babypandas as bpd and
import numpy as np.

• At any point, feel free to use functions and variables that you defined in earlier subparts
of the same question.

3



Question 1 (3 points)

a) (2 points) Assign the variables num rows and num cols to the number of rows and
columns in grades, respectively.

Solution: num rows = grades.shape[0], num cols = grades.shape[1]

b) (1 point) Explain what grades.get("raw score") + 2 does.

Solution: This line adds 2 to each value in the "raw score" column of grades.

Question 2 (9 points)

a) (2 points) Fill in the blank below to add a new column, "late", to grades that is True
if the assignment was submitted late and False otherwise.

grades = grades.assign(late = __(a)__)

Hint: both "0" < "1" and "02" < "03" evaluate to True.

(a): grades.get("turn in date") > grades.get("due date")

For the remaining subparts, assume the "late" column was added to grades correctly
in part (a).

b) (4 points) Write a line of code that assigns hw1 late to the total number of students
who turned in Homework 1 late.

Solution: hw1 late = grades[(grades.get("assignment") == "hw1")

& (grades.get("late"))].shape[0]

4



PID:

c) (3 points) Now, suppose we have run the following line of code:

hw = grades[grades.get("category") == "homework"]

Fill in the blanks below so that submission counts evaluates to a DataFrame with a
single column, count, which containing the total number of late and on-time homework
submissions in hw.

hw_ct_df = hw.groupby(__(b)__).count()

submission_counts = hw_ct_df.assign(

count = hw_ct_df.__(c)__(__(d)__)

).get(["count])

(b): "late" , (c): get

(d): any column other than "late"

Question 3 (13 points)

Suppose the course had a late policy stating that assignments lose 5% of their score for each
day they are submitted late, up to a maximum of 2 days. In this section, we will adjust each
student’s raw score according to how many days late their submission was.

To simplify calculations, assume the following:

• All turn-in dates in grades are in the same month as their corresponding due dates.

• There are no late submissions for exams. That is, all students have the same due date
and turn-in date for assignments in the "exam" category.

a) (3 points) To start, we need to extract the day from each "due date" and "turn in date"

in order to calculate how many days late each submission was.

Fill in the blanks in the function below to extract the day portion of each date as an
integer. Example behavior is shown below.

>>> extract_day("2025-07-18")

18

def extract_day(date):

return __(e)__

(e): int(date.split("-")[2])

5



b) (4 points) Assuming the extract day function works correctly, complete the code
below to create a new column, "days late", in grades that contains the number of
days each assignment was submitted late. If a student turned in an assignment before
the due date, the value in "days late" should be negative.

grades = grades.assign(days_late = __(f)__)

(f):
grades.get("turn in date").apply(extract day) -

grades.get("due date").apply(extract day)

c) (3 points) Recall that an assignment loses 5% of its score for each day it is submitted
late, up to a maximum of 2 days. If an assignment is submitted more than 2 days late,
the score is 0.

Complete the function mult factor, which takes in the number of days late and returns
the factor by which the original score should be multiplied. Submissions turned in early
(negative days late) receive full credit. Example behavior is shown below.

>>> mult_factor(2)

0.9

>>> mult_factor(3)

0

def mult_factor(days_late):

if days_late < 0:

return 1

elif __(g)__:

return __(h)__

else:

return __(i)__

(g): days late <= 2 , (h): 1 - 0.05 * days late

(i): 0

d) (3 points) Finally, fill in the code below to compute each student’s adjusted score for
every assignment, based on the number of days late it was submitted, and store the
result in a new "score" column in grades.

grades = grades.assign(score = __(j)__)

(j):
grades.get("raw score") *

grades.get("days late").apply(mult factor)

6



PID:

Question 4 (11 points)

Now that we have determined the adjusted scores for all assignments, we want to calculate
each student’s overall course grade using the following category weights:

• "homework": 30%

• "lab": 20%

• "exam": 50%

Recall that there are 6 homeworks, 7 labs, and 2 exams. Assume that each student has
exactly 15 rows in grades – one for each assignment – even if they did not submit the
assignment (in which case, the "score" for that assignment would be 0).

Also assume that all assignments are weighted equally within their respective categories.

a) (4 points) Complete the following code to add a new column, "weight", to grades,
containing the weight (as a proportion) that each individual assignment contributes
to the overall course grade.

weights_arr = np.array([])

categories = grades.get("category")

for i in np.arange(__(k)__):

if __(l)__:

weight = 0.3 / 6

elif __(m)__:

weight = 0.2 / 7

else:

weight = 0.5 / 2

weights_arr = __(n)__

grades = grades.assign(weight = weights_arr)

(k): len(categories) , (l):
categories.iloc[i]

== "homework"

(m): categories.iloc[i] == "lab" , (n):
np.append(weights arr,

weight)

7



b) (3 points) Now that we’ve added a "weight" column representing the proportion each
assignment contributes to the overall course grade, we can calculate each student’s over-
all course grade. To do this, we’ll use a weighted average, where each assignment’s
score is multiplied by its weight, and these values are summed across all assignments
for each student.

For example, if a student scores 95 on a lab that’s worth 0.0286 (i.e. 2.86% of the
total grade), then that lab contributes 95∗0.0286 = 2.717 points to their overall course
grade (out of 100 points).

Which of the following correctly sets cg to a DataFrame indexed by "pid" with a
column called "overall" that contains the overall course grade as a percentage for
each student? Select all that apply.

cg = cg.groupby("pid").mean()

cg = cg.assign(overall = cg.get("score") * cg.get("weight")).get(["overall"])

cg = cg.groupby("pid").sum()

cg = cg.assign(overall = cg.get("score") * cg.get("weight")).get(["overall"])

cg = cg.assign(overall = cg.get("score") * cg.get("weight"))

cg = cg.groupby("pid").mean().get(["overall"])

cg = cg.assign(overall = cg.get("score") * cg.get("weight"))

cg = cg.groupby("pid").sum().get(["overall"])

cg = cg.assign(overall = cg.get("score") * cg.get("weight"))

cg = cg.groupby(["pid", "assignment"]).mean().get(["overall"])

cg = cg.assign(overall = cg.get("score") * cg.get("weight"))

cg = cg.groupby(["pid", "assignment"]).sum().get(["overall"])

c) (4 points) Assume that cg is assigned correctly in part (b). Suppose we have access
to another DataFrame, students, with information about each student in grades.
students is indexed by "pid" (str), contains one column, "name" (str), which
stores each student’s name.

Write one line of code to find the name of the student who has the highest overall grade
in the course. You may assume that the highest score is unique.

Solution: cg.merge(students, left index = True, right index = True)

.sort values(by = "overall", ascending = False).get("name").iloc[0]

8



PID:

Question 5 (7 points)

The density histogram below shows the distribution of midterm scores in grades.

a) (1 point) What is the total area of histogram?

1

b) (3 points) Suppose we randomly select one student from the class. What is the prob-
ability that they scored between 70% and 90% on the midterm? Give your answer
as a fraction or decimal, or write ”not enough information” if the answer cannot be
determined from the plot. You may leave your answer unsimplified.

[70, 80) : (10 ∗ 0.02) = 0.2,
[80, 90) : (10 ∗ 0.025) = 0.25

=> [70, 90) :
0.2 + 0.25 = 0.45

c) (2 points) Imagine we changed our histogram to have just one bin, from 30% to 100%.
What would the height of this bin be? Give your answer as a fraction or decimal, or
write ”not enough information” if the answer cannot be determined from the plot. You
may leave your answer unsimplified.

area = w ∗ h =>
1 = 70 ∗ h => 1

70

d) (1 point) What kind of plot should be used to visualize the average score for each
assignments.

scatter plot line plot histogram bar plot none of the
above

9



Question 6 (6 points)

In addition to DSC 10, suppose that each student in the grades DataFrame is enrolled in
exactly one elective course from the table below. The table shows the probability that a
randomly selected student is enrolled in each elective.

Department Name Probability
Film Studies Indigenous Cinema 0.12
Film Studies Queer Film Theory 0.10
Film Studies Film Noir 0.16
Mathematics Real Analysis 0.17
Mathematics Abstract Algebra 0.10
Religion Comparative Religions 0.05
Religion Introduction to Religion 0.15
Religion Religions of Antiquity 0.15

Assume that each student’s elective enrollment is independent of others. For the following
parts, you may leave your answer unsimplified.

a) (2 points) Suppose you randomly select a student. Given that the student is tak-
ing a Religion course as their elective, what is the probability that they are taking
Comparative Religions?

0.05
0.35

= 1
7

b) (2 points) Suppose you randomly select two students. What is the probability that
they are both taking Film Noir as their elective?

(0.16)2

c) (2 points) Suppose you randomly select three students. What is the probability that
at least one of them is taking a Mathematics course as their elective?

1− P (none taking math) =
1 − (1 − (0.27))3

10


